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TWO-EQUATION TURBULENCE MODELS IN
COMPRESSIBLE NAVIER–STOKES METHODS
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SUMMARY

An implicit unfactored method for the coupled solution of the compressible Navier–Stokes equations
with two-equation turbulence models is presented. Both fluid-flow and turbulence transport equations are
discretized by a characteristics-based scheme. The implicit unfactored method combines Newton subiter-
ations and point-by-point Gauss–Seidel subrelaxation. Implicit-coupled and -decoupled strategies are
compared for their efficiency in the solution of the Navier–Stokes equations in conjunction with low-Re
two-equation turbulence models. Computations have been carried out for the flow over an axisymmetric
bump using the k–e and k–v models. Comparisons have been obtained with experimental data and
other numerical solutions. The present study reveals that the implicit unfactored implementation of the
two-equation turbulence models reduces the computing time and improves the robustness of the CFD
code in turbulent compressible flows. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: compressible turbulent flows; implicit solver; characteristics-based method; low-Re two-equation turbu-
lence models

1. INTRODUCTION

Development of new accurate and efficient CFD solvers for turbulent compressible flows is a
subject of continuous interest. Even though many years of extensive research has been
performed to develop new Navier–Stokes solvers, the computation of turbulent flows still
remains a challenging problem. Inaccurate solutions of turbulent flows are due to turbulence
modeling issues, but lack of robustness is mainly due to their numerical implementation.

In the past, algebraic turbulence models have been used as a quick way to extend a code
from laminar to turbulent flows. Use of these models has been motivated by their simplicity
and marginal numerical stiffness. However, experience has shown that in most cases, such
crude modeling of turbulence did not provide satisfactory results. Most of the problems arise
due to the local formulation of the models that neglects memory effects and the ambiguity to
determine length scales of complex flows. Low-Re two-equation models seem to offer the best
balance between accuracy and computational cost. The k–e model [1,2] is one of the most
popular two-equation turbulence models and in the past, the model has been used in
conjunction with wall-functions for a variety of flows [1,3–5]. However, the model exhibits
numerical stiffness and inaccuracies when applied to near-wall turbulent flows as well as
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separated flows [3]. Various versions of the k–e model have been proposed in order to improve
the accuracy of the model in various flow cases [3–5]. An alternative to the k–e model, which
has also received considerable attention, is the k–v model by Wilcox [6,7]. In the past, this
model has been implemented in several flow cases by other authors [8,9].

The lack of numerical stability and robustness of low-Re number turbulence models is due,
most of the time, to their numerical implementation. This numerical stiffness is also one of the
main reasons for sometimes retracting the use of such models in an industrial environment. In
the case of two-equation models, the turbulent kinetic energy is introduced in the Navier–
Stokes equations and this has to be accounted for in the total energy budget. This may have
no effect on the accuracy of the numerical solution, especially in subsonic and transonic flows,
but it contributes to the Jacobian and eigenvector elements of the matrices in the implicit part
of the equations. Further implications also arise from the treatment of the non-conservative
source terms that dominate the formulation of all two-equation turbulence models. Most
researchers implement low-Re turbulence models in a decoupled manner, according to which,
the Navier–Stokes equations are firstly solved, and then the two turbulence equations are
sequentially integrated in order to update the turbulent eddy viscosity [10–12]. Such proce-
dures have been extensively used due to the little effort required to implement turbulence
models into Navier–Stokes solvers; resulting, however, in slow numerical convergence. This
deficiency is more severe when finer grids in the near-wall region are used.

Recently, the implicit-coupled solutions of the turbulence models and Navier–Stokes
equations have attracted the interest of the CFD community [13,14]. Gerolymos and Vallet
[13] have implicitly implemented the Launder–Sharma k–e model using a fully coupled,
approximately factored, implicit backward Euler method. They applied the method for a
transonic flow with shock–boundary layer interaction and found that the method was robust
and stable for Courant–Friedrichs–Lewy (CFL) numbers up to 50. Lin et al. [14] also
presented an implicit-coupled solution of the Navier–Stokes equations in conjunction with
Chien’s k–e model using a biconjugate gradient method with a preconditioner of incomplete
lower-upper factorization. The conclusion of their study was that the biconjugate gradient
(Bi-CGSTAB) method was more efficient than other variants of the Bi-CG method.

Implicit unfactored methods [15] based on Newton subiterations and Gauss–Seidel relax-
ation (IUNGS) have not yet been extended to turbulent flows coupled with low-Re two-equa-
tion models. IUNGS methods have so far been used for Euler [15,16] or Navier–Stokes
simulations in conjunction with algebraic turbulence models [17–19]. In these studies, it has
been shown that high CFL numbers can be obtained by IUNGS methods, while the numerical
solution is less sensitive to the choice of the time step than the approximate factorization
methods. Moreover, past studies [17,18,20] have shown that the combination of IUNGS with
characteristics-based methods results in efficient CFD codes for both serial and parallel
computations [21,22]. Therefore, the extension of IUNGS methods to turbulent flows in
conjunction with low-Re two-equation models is worth investigating and this is the aim of the
present study.

The objectives of this work are: (i) to extend an implicit unfactored method to the solution
of the Navier–Stokes coupled with two-equation models (henceforth labeled implicit-coupled);
(ii) to develop a characteristics-based discretization (Riemann solver) for the inviscid terms of
the coupled system of equations; (iii) to investigate the efficiency of the implicit-coupled
method in contrast to other numerical approaches based on the decoupled solutions of the
fluid flow and turbulence equations; (iv) to implement all the above for the k–e and k–v

models and to present comparisons for the solutions against experimental and numerical
results from the literature. The paper is organised as follows: in Section 2 the governing
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equations, turbulence models, characteristics-based method and implicit unfactored scheme are
presented; in Section 3 the results of the present study are presented for a transonic flow case
with shock/boundary layer interaction induced separation; finally, in Section 4, conclusions
from the present work are drawn.

2. MATHEMATICAL MODELING

2.1. Go6erning equations

The compressible Navier–Stokes equations in conjunction with the differential equations for
the two-equation turbulence model have been employed. The system of equations in curvilin-
ear co-ordinates is written as

(U
(t

+
(E
(j

+
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(z
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(j

+
(S
(z

+Hf+HA, (1)

where U is the six-component vector of the conservative variables

U=J(r, ru, rw, e, rk, rf)T, (2)

where r is the density; u and w are the velocity components in the x- and z-directions,
respectively; e is the total energy of the fluid per unit volume and k is the turbulent kinetic
energy. The variable f denotes the isotropic turbulent dissipation, ẽ, or the specific turbulence
dissipation rate, v, if the k–e or the k–v model is employed, respectively.

The inviscid (E, G) and viscous (R, S) fluxes are written as

E=J(E0 jx+G0 jz),
R=J(R0 jx+S0 jz),

G=J(E0 zx+G0 zz),
S=J(R0 zx+S0 zz),

(3)

where the fluxes with a ‘tilde’ refer to the Cartesian co-ordinate system. The inviscid flux
vectors, E0 and G0 , and the viscous flux vectors, R0 and S0 , are given by
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The source term, HA, accounts for axisymmetric flow problems [23] and is given in Section 2.5,
while the source terms, Hf, for the k–e and k–v turbulence models are given in Section 2.2.
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The total energy per unit volume e includes the specific internal energy i, the kinetic energy
of the fluid as well as the turbulent kinetic energy k

e=ri+
1
2

r(u2+w2)+rk. (6)

The pressure, p, is calculated by the perfect gas equation of state, p=rgi, where g is the ratio
of specific heats, while the heat fluxes, q; i, have been modeled according to Fourier’s law.

In turbulent flows, the stress tensor tij is obtained by the sum of the viscous (t( ij) and
Reynolds stresses (t ij

R)

tij= t( ij+t ij
R. (7)

Within the framework of linear eddy viscosity models, the Boussinesq approximation is used
to calculate the Reynolds stresses.

2.2. Turbulence modeling

Low-Re eddy viscosity models include extra source terms, as well as damping functions and
closure coefficients. The source term for the Launder–Sharma version [4] of the k–e model is
written as
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where the production term is given by
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and the terms e and E are defined as
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where n is the distance from the wall and m is the laminar viscosity. The eddy viscosity is
calculated by

mt=rfmCm

k2

e
, (11)

and the damping functions f1, f2 and fm are calculated from

f1=1, f2=1−0.3e−Ret
2

, fm=e−3.4/(1+Ret /50)2

, Ret=
rk2

mẽ
. (12)

The closure coefficients take the values

Ce 1
=1.44, Ce 2

=1.92, Cm=0.09, sk=1.0, se=1.3. (13)
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According to this model, the wall boundary conditions for k and e are

kw=0, ew=e0. (14)

To improve the model predictions in separated flows, the so-called Yap-correction term [3],
YC, has been included in the e-equation

YC=0.83
ẽ2

k
� l
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�� l
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�2

, (15)

where l is the turbulence length scale and cl=0.089.
The k–v model [6] has also been employed and the source term, in this case Hv, is written

as
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The turbulent viscosity is calculated by

mt=a*
rk
v

, (17)

while the model’s coefficients are

b=
3
40

, b*=
9

100
, a=

5
9
, a*=1, sk=2, sv=2. (18)

The wall boundary conditions for k and v are

kw=0, vw=
19
9

nw

by1
2, (19)

where y1 is the distance from the wall of the first grid point.

2.3. Characteristics-based method for turbulent flows

The characteristics-based method is a linear Riemann solver for the calculation of the
conservative variables along the characteristics (see Figure 1). This method was first presented
by Eberle [24] for the compressible Euler equations and was extended by Drikakis et al. [25,26]
to solve the incompressible Navier–Stokes equations. The inviscid equations are split into two
one-dimensional equations.

Ut=AinvUj=0, Ut+CinvUz=0. (20)

The above equations are used to obtain algebraic relationships for the conservative variables
as functions of their values on the characteristics. In this paper, only the extensions of the
method due to the incorporation of the convection terms of the turbulence transport equations
are presented. For more details on the discretization of the inviscid fluxes of the incompressible
and compressible Navier–Stokes equations, the reader is referred to References [24–26].
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Following Eberle [20,24], the system of the one-dimensional equations can be expanded in
terms of the non-conservative variables r, u, w, p, k, f. In this expansion, the characteristic
values (denoted below by the subscript l) are also introduced.

The use of the non-conservative variables was chosen because it simplifies the derivation of
the expanded form of the one-dimensional equations. The expanded form can be written as
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Figure 1. Schematic representation of the one-dimensional characteristic flux extrapolation and control volume
notation.
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and the eigenvalues l0, l1 and l2 are defined as

l0=uX+wZ, l1=l0+s, l2=l0−s, (23)

where s is the speed of sound. Similar to the case of the Euler equations [20,24], the following
formulae can be derived for the quadruple eigenvalue l0

(p−p0)−s2(r−r0)=0
(w−w0)X− (u−u0)Z=0

k=k0

f=f0

(24)

and for the eigenvalues l1 and l2

(p−p0)+rs [Z(u−u1)+X(w−w1)]=0
(p−p0)+rs [Z(u−u2)+X(w−w2)]=0

. (25)

Equations (24) and (25) are transformed into the conservative variables using the following
formulae
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where

lj= (ru)j, hj= (rw)j, mj= (rk)j, rj= (rf)j, j=0, 1, 2, (27)

and the index j denotes the three characteristics. After some mathematical operations, the
following formulae for the conservative variables are obtained

r=r0+R1+R2,
l= l0+ (u+sX)R1+ (u−sX)R2,

h=h0+ (w+sZ)R1+ (w−sZ)R2,
e=e0+ (H+sl0)R1+ (H−sl0)R2,

m=m0−kR1−kR2,
r=r0−fR1−fR2,

(28)

where H is the enthalpy of the fluid and the terms R1 and R2 are given by
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The characteristic values at the cell faces are calculated by a five-point upwind extrapolation
scheme [18,24] The relationships in Equation (28) are used for the calculation of the
conservative variables at the cell faces and, subsequently, for the discretization of the inviscid
fluxes.

2.4. Implicit unfactored method

The time integration of the Navier–Stokes and turbulence model equations is obtained by
an implicit unfactored method [15] which allows high CFL numbers to be used. The implicit
unfactored discretization of the governing equations is combined with Newton subiterations
and point-by-point Gauss–Seidel relaxation (IUNGS method) which provides high efficiencies
in both vector and parallel computations [21,22].

According to the IUNGS method, Equation (1) is written as

Un+1−Un

Dt
+Ej

n+1+Gz
n+1=Rj

n+1+Sz
n+1+Hf

n+1+HA
n+1. (31)

The inviscid and viscous fluxes are linearized around the time level n
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where

DU=Un+1−Un, (34)

while the numerical treatment of the source terms is discussed in Section 2.5. Using the above
relationships, Equation (31) is written as

DU
Dt

+ (A inv
n DU)j+ (C inv

n DU)z− (Avis
n DU)j− (Cvis

n DU)z+SC=RHS, (35)

where SC are contributions from the linearization of the source terms (see Section 2.5). The
right-hand side (RHS) terms are

RHS= − (Ej
n +Gz
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n −Sz
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n ) (36)

and
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(U
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(U
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(R
(U

, Cvis=
(S
(U

(37)

are the Jacobians of the inviscid and viscous fluxes.
A Newton-type method can be obtained if a sequence of approximations1 q n, such that

limn\1 q n�Un+1 is defined between two time steps n and n+1, respectively. Equation (35) is
rewritten as

Dq n+1

Dt
+ (A inv

n Dq)j+ (C inv
n Dq)z− (Avis

n Dq)j− (Cvis
n Dq)z=

Un−q n

Dt
+RHS, (38)

where

1 q denotes the conservative solution vector U at each Newton subiteration.
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q n+1=q n+Dq n+1. (39)

The superscript n denotes Newton subiterations. On the left-hand side (LHS) of Equation
(38), thin-layer viscous Jacobian matrices have been used instead of full ones. Numerical
experiments have shown that for steady flows, the number of iterations remains the same if the
full Jacobians are used [17,18]. The inviscid Jacobians, A and C, are written in terms of their
eigenvector and eigenvalue matrices, e.g.

Ainv=TLT−1, (40)

where L is the eigenvalue matrix and T, T− l are the left and right eigenvector matrices,
respectively. These are 6×6 matrices, including the contributions from the turbulence model
equations. The Jacobian and eigenvector matrices are given in the Appendix A. The terms
(A inv

n DU)j, (C inv
n DU)z and (Avis

n DU)j, (Cvis
n DU)z are discretized up to second-order of accuracy;

e.g. the left-hand side terms in the j-direction are discretized as

(A inv
n Dq)j− (Avis

n Dq)j= (A inv
n Dq)i+1/2,k− (A inv

n Dq)i−1/2,k

− (Avis
n )i,k(Dqi−1,k−2Dqi,k+Dqi+1,k), (41)

where the superscript n+1 has been dropped from Dq for simplicity. In the above

(A inv
n Dq)i+1/2= (TL+T−1)i+1/2,k(Dq)i+1/2,k

+ + (TL−T−1)i+1/2,k(Dq)i+1/2,k
−
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n Dq)i−1/2= (TL+T−1)i−1/2,k(Dq)i−1/2,k

+ + (TL−T−1)i−1/2,k(Dq)i−1/2,k
− ,

where L+ =max(0, L) and L− =min(0, L) are the diagonal matrices of the positive and
negative eigenvalues of Ainv, respectively. The differences Dq+and Dq− are defined at the cell
faces as

Dqi+1/2
+ =bDqi+ (1−b)(1.5Dqi−0.5Dqi−1),

Dqi−1/2
− =bDqi+ (1−b)(1.5Dqi−0.5Dqi+1),

Dqi+1/2
− =Dqi+1,

Dqi−1/2
+ =Dqi−1,

(42)

where b is a sensor function defined by the maximum of the eigenvalues at the cell faces. To
further improve the efficiency of the implicit solution, Gauss–Seidel relaxation is employed
and Equation (38) is written for each computational cell (i, k) as

(DIAG)i,k
n Dqi,k

m+1,n= −v*(RHS)i,k
n + (ODIAG)i,k

m,n+
Un−q n

Dt
. (43)

(DIAG)i,k
n is a 6×6 matrix including the diagonal elements of the eigenvalue-split inviscid

Jacobians, the viscous Jacobians and the term I/Dt. (ODIAG)i,k includes the off-diagonal
elements and is a function of DUi+1,k, DUi− l,k, DUi,k+ l, DUi,k− l. Four Gauss–Seidel steps
(m=4) and two Newton subiterations (n=2) are performed. The time step Dt is calculated by

Dt=
CFL

[max�li,k �]+2
mcp

Pr
(jx

2 +j z
2+zx

2 +z z
2)

. (44)

The under-relaxation parameter v* is used to compensate for the different orders of accuracy
between the LHS and the RHS. The values of the underrelaxation parameter are: v*=0.3, 0.6
and 0.1 when the RHS is of third-, second- or first-order of accuracy, respectively. The value
of v*=0.5 has been used in this study. The CFL number can take values up to 60 when the
implicit-coupled implementation is used.

For multidimensional problems, the matrix (DIAG)i,k
n has zero or negative diagonal elements

and is, therefore, ill-posed for Gauss-elimination. To recover high values of the CFL number,
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preconditioning is performed on each Gauss–Seidel subiteration [20,24]. The conservative
vector Dq is multiplied by the Jacobian, M=(q*/(q before the Gauss-elimination

(Dq)* ,
i,k
m+1=M(Dq)i,k

m+1, (45)

where q*= (p, u, w, p, k, f)T is the vector of the non-conservative variables. After every
Gauss-elimination, the solution is again converted to the vector Dq by multiplication with the
matrix M−1=(q/(q*.

The implicit-coupled implementation can be applied to different versions of the k–e model
by changing the damping functions, closure coefficients and boundary conditions only. The
Jacobians in the implicit part of the algorithm remain unchanged for all two-equation
turbulence models.

2.5. Implicit treatment of the source terms

Considering the equation

(U
(t

=HH(U, Uj, Uz), (46)

where

U=
�rk

rẽ

�
, H=

�Hk

H ẽ

�
, (47)

then the following time discretization can be obtained,

Un+1=Un+DtHn+1. (48)

After linearization of the matrix Hn+1,

Hn+1=Hn+
(H
(U

(Un+1−Un), (49)

Equation (48) can be written as

(Un+1−Un)
�

I−Dt
(H
(U

�
=DtHn. (50)

Stability analysis of Equation (46) shows that the implicit discretization (50) is unstable if
H\0. Hence, only negative terms can be moved to the LHS of Equation (50) and as a result
to the LHS of Equation (43).

For the case of the k–e turbulence model, the negative source terms are of the form

Hk= −rẽ, Hẽ= −Ce2 f2

(rẽ)2

rk
. (51)

Using the relation mt=Cm fm((rk)2/rẽ), the above relations are written as

Hk= −cm fm

(rk)2

mt

, Hẽ= −Ce2 f2

(rẽ)2

(rk)
. (52)

The Jacobian matrix (H/(U is given by

(H
(U

=
<
−2

Cm fm

mt

(rk)

Ce2 f2

(rẽ)2

(rk)2

0

−2Ce2 f2

rẽ

rk

=
(53)
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and its diagonal elements are added to the (DIAG)i,k
n term of Equation (43) in order to increase

the diagonal dominance.
The source term accounting for axisymmetric flows is written as

HA=J
�

−
G0
z

+
S0 a

z
+ (0, 0, p−tuu, 0, 0, 0)T�+HA

extra. (54)

The matrix S0 a is defined similar to the flux S0 with the only difference being that the
components of the stress tensor tij are expanded to an axisymmetric co-ordinate system. The
axisymmetric stress components are given by

txx
a =m*

�4
3
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�

,

(55)

where m*=m+mt. In the computational code, the velocity derivatives are also expanded to
curvilinear co-ordinates, e.g.

(u
(x

=
(u
(j

(j

(x
+
(u
(z

(z

(x
.

The above tensor components can also be rewritten using their Cartesian counterparts as

txx
a = txx+m*

�
−

2
3
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,
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2
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,
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,

txz
a = txz= tzx.

(56)

The matrix HA
extra originates from the axisymmetric contribution of the stresses into the viscous

fluxes and is considered here separately in order to explain its numerical implementation
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(57)

The term HA can also be written as

HA=HA
inv+HA

vis+HA
extra, (58)

where
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(59)

The terms HA
inv and HA

vis are linearized, similar to the fluxes, around the time level n+1

(HA
inv)n+1= (HA

inv)n+
(HA

inv

(U
(Un+1−Un), (60)

(HA
vis)n+1= (HA

vis)n+
(HA

vis

(U
(Un+1−Un). (61)

The Jacobians (HA
inv/(U and (HA

vis/(U are defined on the centroids (i, k), and therefore,
contribute to the diagonal elements (DIAG)i,k

n of the matrix inversion in Equation (43). If the
term HA

extra had also been linearized, then, due to the presence of spatial derivatives in
Equation (57), the elements of the Jacobian (HA

extra/(U would contribute only to the off-diag-
onal elements, (ODIAG)i,k

m,n, of the matrix inversion in Equation (43). Therefore, in the present
study, the term HA

extra was not linearized and was simply added as source to the RHS
(Equation (36)).

Moreover, it was found that the implicit treatment of the axisymmetric terms only slightly
influences the numerical convergence. Therefore, the additional CPU time required to compute
and add these terms to the diagonal elements (DIAG)i,k

n balances the slight reduction, if any at
all, in the number of iterations. There is a fundamental difference between the treatment of the
sources for the turbulence model and those due to the axisymmetric formulation. Turbulence
model source terms are mainly responsible for the stiffness of the final system of equations.
This is the reason why linearization of these terms was found to have a positive influence on
the rate of convergence. The source terms due to the axisymmetric formulation have small
values on the LHS (zero for planar cases) and, subsequently, have no significant influence on
the performance of the implicit method.

2.6. Implicit-coupled, implicit-decoupled and explicit strategies

The objective of the present work is to extend an implicit unfactored method to the coupled
solution of the low-Re model and Navier–Stokes equations. This method is henceforth labeled
implicit-coupled scheme. The efficiency of this method is verified in contrast to implicit-decou-
pled and explicit schemes.

In the implicit-decoupled scheme, the implicit solution is only used for the fluid-flow
equations, while the turbulent transport equations are solved by the Runge–Kutta explicit
scheme. Furthermore, one may adopt the Runge–Kutta scheme to solve both the fluid-flow
and turbulent-flow equations. This third alternative will henceforth be labeled explicit-scheme.

In the present work, the Launder–Sharma k–e and the k–v models have been implemented
in conjunction with the implicit and explicit solution procedures.
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Figure 2. Schematic for the axisymmetric bump geometry.

3. RESULTS

3.1. Description of the flow case

The flow over an axisymmetric bump geometry (Figure 2) has been selected for the
validation of the implicit method and turbulence models. For this geometry, experimental
measurements for the wall pressure distribution, as well as the velocity, turbulent shear stress
and turbulent kinetic energy profiles at various x/c locations, have been performed by Johnson
et al. [27]. Furthermore, numerical results have been reported by other researchers [12,18,27]
using different computational methods and turbulence models than the present ones.

The experimental results by Johnson et al. [27] correspond to M�=0.875 and Reynolds
number per unit length, Re m−1=13.6×106 m−1. All lengths have been non-dimensionalized
using the bump’s length, c.

Three computational grids, 40×20, 80×40 and 160×80, respectively, have been used and
details for these grids are given in Table I. The second grid (G2) is comparable with that used
by Sahu and Danberg [12]. The third grid (G3) is similar to that used by Drikakis and Durst
[18]. The grids G2 and G3 correspond to y+#0.5 and y+#0.1, respectively. A partial view
of the finest grid is shown in Figure 3. The third grid was sufficient to obtain a grid-indepen-
dent solution.

3.2. Implicit-coupled 6ersus implicit-decoupled and explicit schemes

The convergence histories for the conservative variables are shown in Figure 4 for the k–e

and k–v models using the implicit-coupled method and the finest grid. All results were
obtained on a HP 9000/735/99 workstation using double precision computer arithmetics.

Table I. Finite volume grids used in the calculation

Grid Computational Distance from theMinimum andMinimum and
maximumvolumes wall of the firstmaximum
x-co-ordinates z-co-ordinates grid node

G1 5×10−53.4/4−5/540×20
−5/6 3.4/4 1×10−5G2 80×40

1×10−63.4/4G3 −6/6160×80
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Figure 3. Partial view of the finest computational grid (G3).

About 500 work-units (one work-unit represents a minute of CPU time) are needed to reduce
the norm of error less than 10−4 with the implicit-coupled solver and the k–v model. In these
Figures, the maximum normalized changes of the conservative variables are plotted. The k–v

model requires less work-units than the k–e model to obtain the steady state solution. The
different convergence behavior between the two models is due to the boundary condition for
v. Wilcox [7] reported that the boundary condition for v has a stabilizing effect on the
convergence of numerical schemes.

Figure 5 compares the convergence of the implicit-coupled strategy with the implicit-decou-
pled and explicit schemes. The maximum error in the sum of all fluxes over all computational
cells is used as an indicator of convergence. For both turbulence models, one may see that the
implicit-coupled solution requires less work-units than the explicit scheme and almost half of
the work-units of the implicit-decoupled solution.

The work-units required for a steady state solution using different solution strategies are
presented in Table II. From this table, one can see that the efficiency of the implicit-coupled
solver is greater than that of other schemes. Even though at each time step the implicit solution
requires extra computing effort to invert the 6×6 system of equations, less iterations are
required in comparison with the implicit-decoupled and explicit schemes. The work-units
required for the solution of the same problem using the Baldwin–Lomax algebraic turbulence
model are also given. The solution using low-Re two-equation turbulence models requires
almost double the work-units.

3.3. Comparison with experimental data and numerical solutions

Results for the shock wave location are given in Table III. The prediction of the shock
location using the Launder–Sharma k–e model are closer to the experimental results by
Johnson et al. [27] as well as the numerical predictions of previous studies [12,18]. The k–v

model shifted the shock location upstream. The same behavior was also reported by Johnson
et al. [27] in their numerical calculations with the k–v model.

Calculations using three computational grids were carried out in order to verify the
grid-independent solution. Large differences were found between the grids G1 and G2.
Comparison of the surface pressure distribution on grids G2 and G3 are shown in Figures 6
and 7 for the k–e and k–v models, respectively. Calculations using finer grids showed that G3
is sufficient to obtain a grid-independent solution.
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Figure 4. Convergence histories for the Launder–Sharma k–e and k–v models using the grid G3: (a) density and
energy, (b) velocity components, (c) rk, re and rv.
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The surface pressure distributions obtained by the k–e and k–v models were compared
with the numerical results by Sahu and Danberg [12] and Liou and Shih [11], as well as
with experimental data by Johnson et al. [27]. The comparisons are shown in Figures 6 and
7 for the k–e and the k–v models, respectively. Better results are obtained using the
Launder–Sharma k–e model, while the k–v model seems to overestimate the pressure
values downstream of the shock. The present results are in better agreement with the
experimental than the numerical predictions obtained in References [11,12] using Chien’s
k–e turbulence model.

Figure 5. Convergence histories (on grid G3) for (a) the Launder–Sharma k–e model, and (b) the k–v model, using
the implicit-coupled, implicit-decoupled and explicit schemes.
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Table II. Work-units for steady state solution using the k–v modela

Implicit-coupled Implicit-decoupledGrid Explicit

60.4851.7 (10.8)G1 76.9
163.2 (105.0) 436.8 661.05G2

G3 8597.2971.1 (616.5) 1792.7

a Numbers in brackets refer to the calculation with the Baldwin–Lomax algebraic
turbulence model.

Table III. Comparisons between present results, experimental data by Johnson
et al. [27] and past numerical results [12,18], for the shock-wave location

Reference Shock position x/c Turbulence model

#0.7Experiment
Present work (grid G3) 0.70 Launder–Sharma k–e

k–v0.65Present work (grid G3)
Baldwin–Lomax0.69Drikakis and Durst
Chien’s k–e0.7Sahu and Danberg

Comparisons with the experimental results for the velocity, turbulent kinetic energy and
turbulent shear stress profiles are given in Figure 8. The velocity predictions are better for the
k–e model (Figure 8). For both models, the predictions of the turbulent shear stress show
reasonable trends only upstream and downstream of the shock. Large discrepancies occur in
the region near the shock wave. Comparing the results of the two models (Figure 8), it is not
obvious which model gives the best results for the turbulent shear stress. The results for the
turbulent kinetic energy (Figure 8) show again that in the regions where no separation occurs,
the predictions are in better agreement with the experimental data. Past numerical studies
using different models and methods have revealed the same behavior [12,18].

4. CONCLUSIONS

Implicit unfactored implementation of low-Re two-equation turbulence models in conjunction
with a characteristics-based method for compressible flows was presented. The validation of
the method has been obtained by comparisons with experimental and numerical results
appearing in the literature. The present method has also been assessed in contrast to decoupled
and explicit solution strategies. The implicit unfactored method has been applied for both the
k–e and k–v models. From this study the following conclusions can be drawn:

1. The coupling of two-equation turbulence models with the Navier–Stokes equations using
the present implicit unfactored scheme results in robust numerical solutions in turbulent
compressible flows. The implicit coupling of the turbulence model and Navier–Stokes
equations results in more efficient solutions compared with the implicit-decoupled and
explicit ones.

2. Little effort and minor modifications are required to implement other versions of the k–e

or k–v models in the existing implicit-coupled solver.
3. The Launder–Sharma k–e model with the Yap-correction predicts better the boundary

layer separation than the k–v model. However, different versions [7,8,28] of the k–v

model have also to be investigated in order to confirm this conclusion.
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4. The calculations showed that the k–v model gives faster solutions than the Launder–
Sharma k–e model.

The extension of the implicit method in conjunction with Reynolds stress and non-linear
eddy viscosity models for both steady and unsteady flows, is in progress and results will be
presented in a future paper.

Figure 6. Comparison between the present results using the Launder–Sharma k–e model, the experiments by Johnson
et al. [27] and simulation results by Liou and Shih [11] for the surface pressure distribution over the axisymmetric

bump.

Figure 7. Comparison between present results using the k–v model, experiments by Johnson et al. [27] and simulation
results by Liou and Shih [11] for the surface pressure distribution over the axisymmetric bump.
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Figure 8. Comparison between present results, experiments by Johnson et al. [27] and computations by Sahu and
Danberg [12] for the velocity, turbulent shear stress and turbulent kinetic energy profiles.
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APPENDIX A. JACOBIANS OF THE INVISCID FLUXES

The Jacobian matrices of the inviscid fluxes E and G are given by

A=
(E
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, (62)
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The Jacobian A0 =(E0 /(U of the Cartesian flux E0 , as well as the corresponding eigenvector
matrices T0 and T0 −1 are given below
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and T0 −1 is
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and s is the speed of sound, which for an ideal gas is given by

s=
'gp

r
, (73)

Q is the kinetic energy of the fluid per unit mass

Q=
u2+w2

2
. (74)

Similar relations can be extracted for the Jacobian C0 .

REFERENCES

1. B.E. Launder and D.B. Spalding, ‘The numerical computation of turbulent flows’, Comput. Methods Appl. Mech.
Eng. 3, 269–289 (1974).

2. W.P. Jones and B.E. Launder, ‘The prediction of laminarization with a two-equation model of turbulence’, Int.
J. Heat Mass Transf. 15, 301–314 (1972).

3. C.R. Yap, ‘Turbulent heat and momentum transfer in recirculating and impinging flows’, Ph.D Thesis, Faculty of
Technology, UMIST, 1987.

4. B.E. Launder and B.I. Sharma, ‘Application of the energy-dissipation model of turbulence to the calculation of
flow near a spinning disk’, Lett. Heat Mass Transf. 1, 131–138 (1974).

5. K.-Y. Chien, ‘Predictions of channel and boundary layer flows with a low-Reynolds number turbulence model’,
AIAA J. 20, 33–38 (1992).

6. D.C. Wilcox and R.M. Traci, ‘A complete model of turbulence’, AIAA Paper 76-351, July, 1976.
7. D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries, Wilcox, CA, 1993.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 73–94 (1998)



G. BARAKOS AND D. DRIKAKIS94

8. F.R. Menter, ‘Influence of freestream values on k–v turbulence model predictions’, AIAA J. 30, 1657–1659
(1992).

9. F. Liu, ‘Multigrid solution of the Navier–Stokes equations with a two-equation turbulence model’, in D.A.
Caughey and M.M. Hafez (eds.), Frontiers of Computational Fluid Dynamics, Wiley, New York, 1994, pp.
339–359.

10. R.F. Kunz and B. Lakshminarayama, ‘Explicit Navier–Stokes computation of cascade flows using the k–e
turbulence model’, AIAA J. 30, 13–22 (1992).

11. W.W. Liou and T.H. Shih, ‘Transonic turbulent flow predictions with two-equation turbulence models’, ICOMP,
NASA, Lewis, CR, 1996.

12. J. Sahu and J. Danberg, ‘Navier–Stokes computations of transonic flows with a two-equation turbulence model’,
AIAA J. 24, 1744–1751 (1986).

13. G.A. Gerolymos and I. Vallet, ‘Implicit computation of three-dimensional compressible Navier–Stokes equations
using k–e closure’, AIAA J. 34, 1321–1330 (1996).

14. H. Lin, D.Y. Yang and C.-C. Chieng, ‘Variants of biconjugate gradient method for compressible Navier–Stokes
solver’, AIAA J. 33, 1177–1184 (1995).

15. S.R. Chakravarthy, ‘High resolution upwind formulations for the Navier–Stokes equations’, VKI Lecture Series,
Computational Fluid Dynamics, 1988-05, 1988.

16. A. Eberle, ‘3D Euler calculations using characteristic flux extrapolation’, AIAA-85-0119, January 14–17, Reno,
NV, 1985.

17. M.A. Schmatz, A. Brenneis and A. Eberle, ‘Verification of an implicit relaxation method for steady and unsteady
viscous flow problems’, AGARD CP 437, 15-1–33, 1988.

18. D. Drikakis and F. Durst, ‘Investigation of flux formulae in transonic shock wave/turbulent boundary layer
interaction’, Int. J. Numer. Methods Fluids 18, 385–413 (1994).

19. J.P. Chen and D.L. Whitfield, ‘Navier–Stokes calculations for the unsteady flow-field of turbomachinery’,
AIAA-93-0676, 31st Aerosp. Sci. Meet., January 11–14, Reno, NV, 1993.

20. A. Eberle, A. Rizzi and E.H. Hirschel, Numerical Solutions of the Euler Equations for Steady Flow Problems,
Notes Numerical Fluid Mechanics, vol. 34, Wiesbaden, Vieweg-Verlag, 1992.

21. D. Drikakis, E. Schreck and F. Durst, ‘Performance analysis of viscous flow computations on various parallel
architectures’, ASME J. Fluids Eng. 116, 835–841 (1994).

22. D. Drikakis and F. Durst, ‘Parallelization of inviscid and viscous flow solvers’, Int. J. Comput. Fluid Dyn. 3,
101–121 (1994).

23. R. Peyret and H. Viviand, ‘Computation of viscous compressible flows based on the Navier–Stokes equations’,
AGARD AG-212 Rep., 1975.

24. A. Eberle, ‘Characteristic flux averaging approach to the solution of Euler’s equations’, VKI Lecture Series,
Computational Fluid Dynamics 1987-04, 1987.

25. D. Drikakis, P.A. Govatsos and D.E. Papantonis, ‘A characteristics-based method for incompressible flows’, Int.
J. Numer. Methods Fluids 19, 667–685 (1994).

26. D. Drikakis, ‘A parallel multiblock characteristics-based method for 3D incompressible flows’, Ad6. Eng. Softw.
26, 111-119 (1996).

27. D.A. Johnson, C.C. Horstman and W.D. Bachalo, ‘Comparison between experiment and prediction for a
transonic turbulent separated flow’, AIAA J. 20, 737–744 (1982).

28. Menter F.R., ‘Two-equation eddy-viscosity turbulence models for engineering applications’, AIAA J. 32, 57–63
(1994).

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 73–94 (1998)


